

UNIVERSITÄT

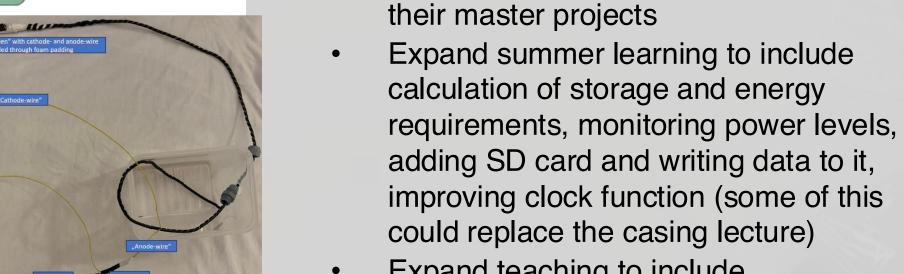
Institute of Geography and Oeschger Center of Climate Change Research

Empowering Students Through Hands-On Geosensing: A Transformative Approach in Geography Education

Natalie C. Ceperley (natalie.ceperley@giub.unibe.ch), Peter Leiser, Bettina Schaefli

Self-Directed Learning (April – August)

- Goal 1: Foundation in Arduino
- Goal 2: Generate & Share ideas


 - Library (Examples of Sensors in Literature & Web)

Course Layout: 6 cycles of "feedback rounds" linked to 6 Themes

How does the CO? Scientific Questions

concentration change over time in a crosed environment over vegetated soil and lower soil?

Sensors

1.What 3

things did

you learn this

summer?

2.What 2

questions do

you have for your class

mates?

3.What is your

number 1 goa

for this

workshop

week?

Expand teaching to include communicating with LORA

Enlight network?)

Feedback (+)

or equal learning

strengths.

Feedback (-)

discussions

deadlines)

of input)

concrete examples

Enthusiastic. I would recommend it!

Learning journal to track own progress

Arduino! Don't feel intimidated = dive in!

Group work was nice because we could

define the roles/ choice of more division

Open => creativity (biggest learning!)

Self-study phase especially good

Hands-on learning aligned with my

Liked starting with a concrete exercise

Dragging at times: too much participant

initiative, pedagogical methods, and

Too much uncertainty, give us more

Solicit less general feedback

Ideas for Future (2026)

Tell us more about the learning journal

and specific goals (i.e. photos, sketches,

It was hard to solve problems (need lots

Recruit more students – cross listed in

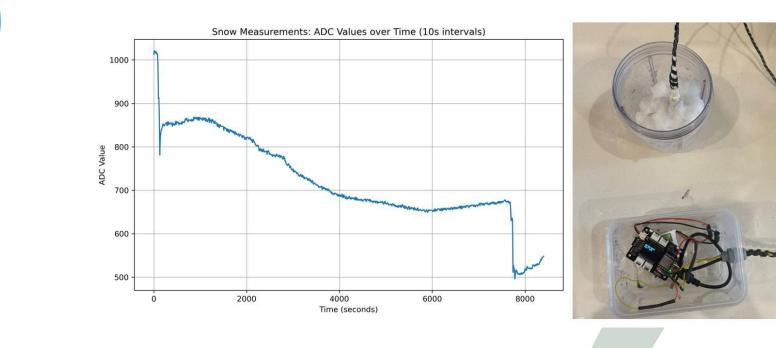
Find students who will use it to prepare

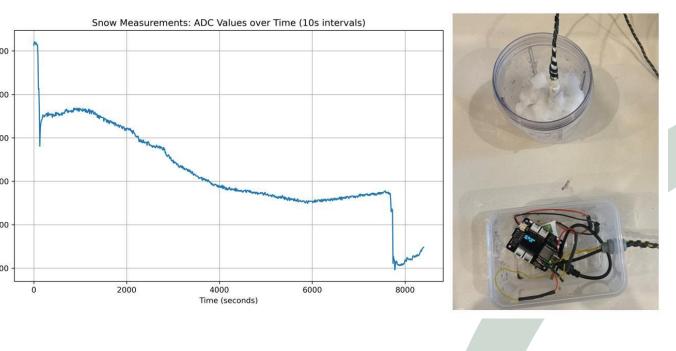
multiple master programs (perhaps with

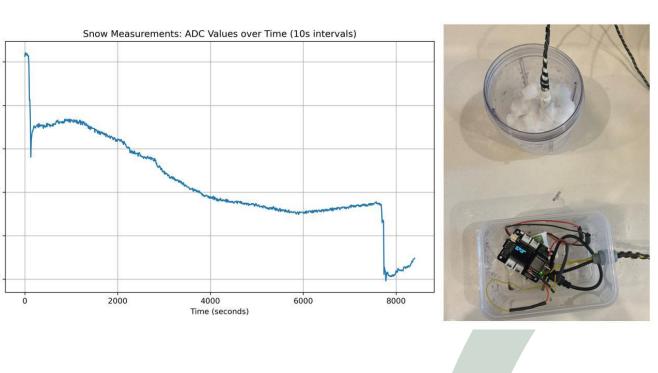
- Add a pressure sensor to our kit
- Add more examples of different date stamps and a game to learn to import them quickly
- Discuss official rules, permissions, equipment labels, and desiccant to casing lecture
- Teach troubleshooting with role playing scenarios to figure out
- Bring in the 3D printer (new to us!)
- Have access to more "maker" equipment, i.e., craft material
- Have more concrete guidelines for manuals and intermediate tasks in class to assemble its contents (i.e., diagrams)

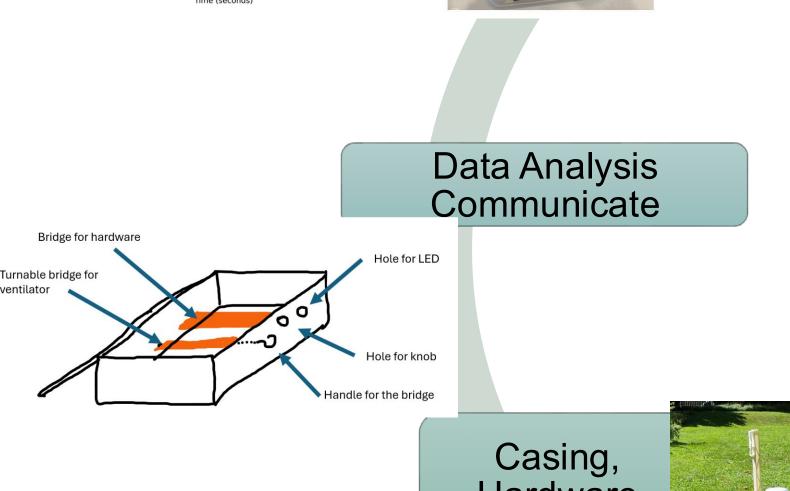
Acknowledgements

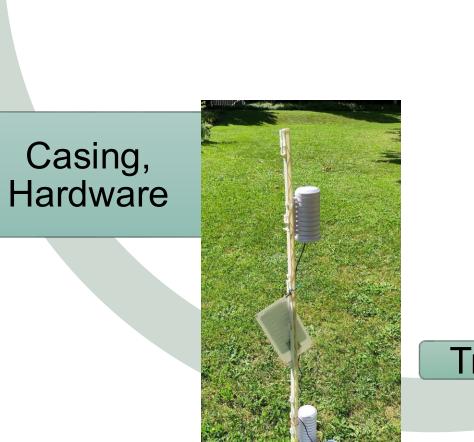
- 2022 Support from the "Förderung Innovative Lehre (FIL)" via the Vice Rectorate of Teaching at the University of Bern
- Participants from 2 years, Linus Fässler (Assistant year 1)

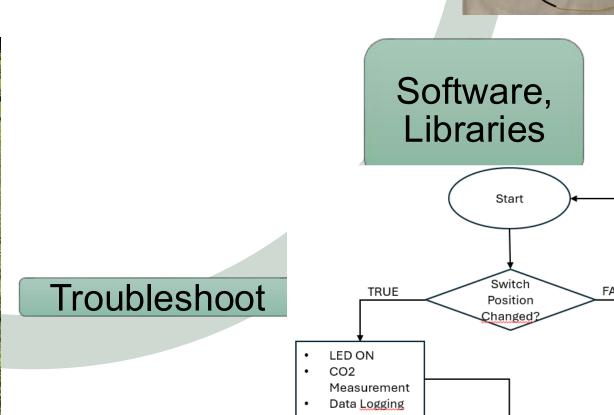

- Tool: Illias (online learning platform) with Seeduino book
 - Learning Journals (Metacognition, Track progress)
 - Forum (Exchange, Troubleshoot, Brainstrom)


Workshop: Format


& Design Thinking Steps


Empathize Define


Prototype



Check- points:

Learning Journal entries complete after each self learning module, each day of workshop and after course (also to give open-ended feedback)

- Informal check-in at the start and end of each group workday.
- Group Feedback at course start, transition to workshop, and end

Lessons from 2 years

- Trade-off between structure and unstructured / input and self-led activity must be integrated.
- Switch from technical learning to creative learning is hard for students.
- Structure design thinking with clear steps, tools, handouts and time limits.
- Stop 15 minutes early for group reflection; the morning and afternoon check-ins are important during open-ended days.
- Be careful that the grade reflects the creative process and the resulting product.
- Learning Journals are great, but the format could be improved in Ilias (i.e., export function).

Input

Income

Theory

iLOs

Activities

Assessments

Output

Outcome

Pedagogical Framework 2022 & 2024

6 course days (1 in May to launch; 5 in August for workshop), 3 instructors (scientist, technician, assistant); 11 students (MA geography, diverse competencies in terms of science and technical, various timelines for master research)

motivation of students & instructors, support from geography institute &FIL-university)

> constructive alignment, self-directed learning, collaborative workshop

scientific questions; micro electronic sensors; communication

of data & results

literature, presentations, observations, independent learnfeedback rounds, bleshooting, field intra- group exchange

ing, ilias platform (forum, etherboard, learning resource), peer-feedback, trouinstallation, visualization, inner- and

> participation, presentation, proposal

scientific questions, measuring devices, data sets, evaluation of learning

technical competence, knowledge, familiarity, raspberry pi, python, field work, scientific maturity, scientific process from question to collection to data to answer to communication, exposure to proposal, good collaborators

Impact

better scientists and teachers

